A Kernel-based Collocation Method for Elliptic Partial Differential Equations with Random Coefficients
نویسندگان
چکیده
This paper is an extension of previous work where we laid the foundation for the kernel-based collocation solution of stochastic partial differential equations (SPDEs), but dealt only with the simpler problem of right-hand-side Gaussian noises. In the present paper we show that kernel-based collocation methods can be used to approximate the solutions of high-dimensional elliptic partial differential equations with potentially non-Gaussian random coefficients on the left-hand-side. The kernel-based method is a meshfree approximation method, which does not require an underlying computational mesh. The kernel-based solution is a linear combination of a reproducing kernel derived from the related random differential and boundary operators of SPDEs centered at collocation points to be chosen by the user. The random expansion coefficients are obtained by solving a system of random linear equations. For a given kernel function, we show that the convergence of our estimator depends only on the fill distance of the collocation points for the bounded domain of the SPDEs when the random coefficients in the differential operator are random variables. According to our numerical experiments, the kernelbased method produces well-behaved approximate probability distributions of the solutions of SPDEs.
منابع مشابه
Kernel-based Collocation Methods versus Galerkin Finite Element Methods for Approximating Elliptic Stochastic Partial Differential Equations
We compare a kernel-based collocation method (meshfree approximation method) with a Galerkin finite element method for solving elliptic stochastic partial differential equations driven by Gaussian noise. The kernel-based collocation solution is a linear combination of reproducing kernels obtained from related differential and boundary operators centered at chosen collocation points. Its random ...
متن کاملApproximation of stochastic partial differential equations by a kernel-based collocation method
In this paper we present the theoretical framework needed to justify the use of a kernelbased collocation method (meshfree approximation method) to estimate the solution of highdimensional stochastic partial differential equations (SPDEs). Using an implicit time stepping scheme, we transform stochastic parabolic equations into stochastic elliptic equations. Our main attention is concentrated on...
متن کاملSolving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation
In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...
متن کاملA Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data
In this paper we propose and analyze a Stochastic-Collocation method to solve elliptic Partial Differential Equations with random coefficients and forcing terms (input data of the model). The input data are assumed to depend on a finite number of random variables. The method consists in a Galerkin approximation in space and a collocation in the zeros of suitable tensor product orthogonal polyno...
متن کاملThe use of radial basis functions by variable shape parameter for solving partial differential equations
In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...
متن کامل